NAG Fortran Library Routine Document

F08AXF (CUNMLQ/ZUNMLQ)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F08AXF (CUNMLQ/ZUNMLQ) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from an LQ factorization computed by F08AVF (CGELQF/ZGELQF).

2 Specification

 SUBROUTINE F08AXF(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,

 1
 LWORK, INFO)

 ENTRY
 cunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,

 1
 LWORK, INFO)

 INTEGER
 M, N, K, LDA, LDC, LWORK, INFO

 complex
 A(LDA,*), TAU(*), C(LDC,*), WORK(*)

 CHARACTER*1
 SIDE, TRANS

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine is intended to be used after a call to F08AVF (CGELQF/ZGELQF), which performs an LQ factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary reflectors.

This routine may be used to form one of the matrix products

 $QC, Q^H C, CQ$ or CQ^H ,

overwriting the result on C (which may be any complex rectangular matrix).

4 References

Golub G H and van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: SIDE – CHARACTER*1

On entry: indicates how Q or Q^H is to be applied to C as follows:

if SIDE = 'L', Q or Q^H is applied to C from the left;

if SIDE = 'R', Q or Q^H is applied to C from the right.

Constraint: SIDE = 'L' or 'R'.

[NP3546/20A]

Input

F08AXF (CUNMLQ/ZUNMLQ)

2:	TRANS – CHARACTER*1 Input
	On entry: indicates whether Q or Q^H is to be applied to C as follows:
	if TRANS = 'N', Q is applied to C ;
	if TRANS = 'C', Q^H is applied to C.
	Constraint: $TRANS = 'N'$ or 'C'.
3:	M – INTEGER Input
	On entry: m, the number of rows of the matrix C.
	Constraint: $M \ge 0$.
4:	N – INTEGER Input
	On entry: n, the number of columns of the matrix C.
	Constraint: $N \ge 0$.
5:	K – INTEGER Input
	On entry: k , the number of elementary reflectors whose product defines the matrix Q .
	Constraints:
	$\begin{split} M &\geq K \geq 0 \text{ if SIDE} = `L', \\ N &\geq K \geq 0 \text{ if SIDE} = `R'. \end{split}$
6:	A(LDA,*) – <i>complex</i> array Input/Output
	Note: the second dimension of the array A must be at least $max(1, M)$ if $SIDE = L'$ and at least $max(1, N)$ if $SIDE = R'$.
	<i>On entry</i> : details of the vectors which define the elementary reflectors, as returned by F08AVF (CGELQF/ZGELQF).
	On exit: used as internal workspace prior to being restored and hence is unchanged.
7:	LDA – INTEGER Input
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from which F08AXF (CUNMLQ/ZUNMLQ) is called.
	<i>Constraint</i> : LDA $\geq \max(1, K)$.
8:	TAU(*) – <i>complex</i> array Input
	Note: the dimension of the array TAU must be at least $max(1,K)$.
	On entry: further details of the elementary reflectors, as returned by F08AVF (CGELQF/ZGELQF).
9:	C(LDC,*) – <i>complex</i> array <i>Input/Output</i>
	Note: the second dimension of the array C must be at least $max(1, N)$.
	On entry: the m by n matrix C .
	On exit: C is overwritten by QC or $Q^{H}C$ or CQ or CQ^{H} as specified by SIDE and TRANS.
10:	LDC – INTEGER Input
	<i>On entry</i> : the first dimension of the array C as declared in the (sub)program from which F08AXF (CUNMLQ/ZUNMLQ) is called.
	<i>Constraint</i> : LDC $\geq \max(1, M)$.

11: WORK(*) – *complex* array

Note: the dimension of the array WORK must be at least max(1, LWORK).

On exit: if INFO = 0, the real part of WORK(1) contains the minimum value of LWORK required for optimum performance.

12: LWORK – INTEGER

On entry: the dimension of the array WORK as declared in the (sub)program from which F08AXF (CUNMLQ/ZUNMLQ) is called, unless LWORK = -1, in which case a workspace query is assumed and the routine only calculates the optimal dimension of WORK (using the formula given below).

Suggested value: for optimum performance LWORK should be at least $N \times nb$ if SIDE = 'L' and at least $M \times nb$ if SIDE = 'R', where nb is the **blocksize**.

Constraints:

LWORK $\geq \max(1, N)$ or LWORK = -1 if SIDE = 'L', LWORK $\geq \max(1, M)$ or LWORK = -1 if SIDE = 'R'.

13: INFO – INTEGER

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$||E||_2 = O(\epsilon) ||C||_2,$$

where ϵ is the *machine precision*.

8 Further Comments

The total number of real floating-point operations is approximately 8nk(2m-k) if SIDE = 'L' and 8mk(2n-k) if SIDE = 'R'.

The real analogue of this routine is F08AKF (SORMLQ/DORMLQ).

9 Example

See Section 9 of the document for F08AVF (CGELQF/ZGELQF).

Workspace

Input

Output